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Single-trial, event-related potentials (ERPs) capture both evoked and induced 
activity.  Typically, these potentials are averaged across presentations of the 
stimulus to reduce noise while enhancing the evoked responses.  However, 
averaging masks trial-to-trial variability in the evoked response, and the dynamics 
of this variability may be related to higher-order cognitive functions such as 
perception.  We previously introduced the differentially Variable Component 
Analysis (dVCA) technique to characterize this variability and to evaluate single-
trial, evoked responses.  In addition, subtracting the evoked activity from the 
single-trial ERP permits the study of induced activity.  Here, we will demonstrate 
the application of dVCA to data collected from primary visual cortex of a macaque 
monkey.  We will highlight some of the major capabilities of this technique, but we 
will not provide an in-depth analysis of these data.

Studying single-trialsStudying single-trials

Data collectionData collection

Data were collected from primary visual area V1 of an awake macaque monkey 
by acutely inserting a linear-array electrode into the brain. Field potential activity 
was sampled continuously at 2000 Hz, while the subject was presented with 
randomly interspersed standard and target visual stimuli at an average rate of 
2/sec.  The standard visual stimulus was of a 10-µs, red-light flash, and the target 
varied slightly in intensity.  The monkey released a lever after each presentation 
of the target stimulus to earn a drop of juice.

The ModelThe Model

The model underlying dVCA states that a single-trial ERP consists of evoked 
activity plus some unpredictable signal.  The evoked portion (first term on the 
right-hand side of the equation) refers to activity that is relatively time- and phase-
locked to stimulus presentation.  On the other hand, the unpredictable signal 
consists of induced non-phase locked activity and noise.

The AlgorithmThe Algorithm

Bayes’ theorm is utilized to express 
the posterior probability of the 
model above.  From this maximum 
a priori solutions are computed for 
each parameter of the model.  A 
fixed-point algorithm is used to 
estimate the most probable 
parameter set for our model.

Applying dVCAApplying dVCA

dVCA was applied to 137 single-
trial ERPs recorded in response to 
the standard stimulus.  A 1-
component model was estimated 
for these data, and its current 
source density (CSD) profile is 
illustrated. Not surprisingly, the 1-
component model captures much of 
the activity shown in the average 
CSD profile of the actual data.

The histogram of amplitude scales illustrates that 
the variability in this component’s amplitude is 
quite small (standard deviation – σamplitude = 
0.173).

The histogram of the latency shifts shows a 
bimodal distribution with peaks at -5.63 and 
+3.13 ms.  Based on the guidelines of the 
algorithm, we split the data set in two and 
generated an “early” and “late” subset.

Verifying the dVCA ResultsVerifying the dVCA Results

Visual inspection of the actual single-trial CSD signals illustrates that several 
neural responses diverge from baseline prior to the majority, and these trials 
coincide with those predicted as “early” by the dVCA estimates (green ticks in left 
figure).  Selectively averaging data according to the early and late designations 
confirms that the onset latency of the CSD signal in the early subset precedes 
that in the late subset (right figure).

Examining Evoked ActivityExamining Evoked Activity

dVCA was applied to the 88 trials 
comprising late subset. Two 
components were estimated as per 
the algorithm.  The onset latency of 
the first component was 38 ms and 
that of the second component was 
44 ms.

The amplitude scale and latency 
shift histograms show that 
component 2 is more variable than 
component 1.

σα1 = 0.136

σα2 = 0.392

στ1 = 3.28 ms

στ2 = 18.11 ms

Please visit 430.19 for more details on the dVCA technique, and please see 485.19 
(this afternoon) for a study of ongoing activity using the dVCA technique.

Examining Evoked Activity ContinuedExamining Evoked Activity Continued

There is a significant positive correlation between the amplitude of component 1 
and 2 (r = 0.38, p < 0.001), but there is no relation between the latency shift 
estimates even if the extreme points of component 2 are excluded.

Studying Ongoing ActivityStudying Ongoing Activity

The unpredictable signals in the 
late subset were calculated by 
subtracting the 2-component model 
from the actual data in each trial.  
Single-trial, time-frequency (TF) 
maps were calculated and 
averaged across trials to generate 
the plots shown on the left.  

Layer 2/3 (Ch. 2) - γ-band activity 
(34-50 Hz) peaks at 71.5 ms and 38 
Hz, while the very high frequency 
(VHF) activity (52-76 Hz) peaks at 
89.5 ms and 65 Hz.  

Layer 4 (Ch. 9) - γ-band activity 
peaks at 65 ms and 35 Hz 

Lower layers (Ch. 12) – γ-band 
activity peaks at 80 ms and 36 Hz 

SummarySummary
The dVCA technique permits researchers to study single-trial ERPs, which 
capture both evoked and induced activity.  By characterizing the evoked activity 
and its variability, one can study how single-trial ERPs vary with system wide 
variables such as attention and arousal or with behavioral measures such as 
reaction time.  Moreover, this information may be used to evaluate how different 
components co-vary in the same brain area or across brain regions.  Finally, 
dVCA allows researchers to evaluate ongoing activity, which may contain induced 
oscillations.  These capabilities of dVCA suggest that this technique may further 
our understanding of neural mechanisms underlying perception.
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